03 F'S - File System & FUSE
Vau LS M OF (] Ancka Soal Ujian Sistem Operasi

A. Wibisono (AW), C. BinKadal (CB)

H. Kurniawan (HK)
© 2016 - 2024 — Rev: 45 — 26-Mar-2024. URL: https://rms46.vlsm.org/2/198.pdf. More can be accessed
via https://os.vlsm.org/. This free document is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY, without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR

PURPOSE. You might change, reproduce, and distribute this document but not delete these provisions. This is the
way!

1. 2016-1a

Circle or cross: ”"T” if True — "F” if False.
T / F A file is logical storage unit (Silber9).

T /F A volume (of file system) may be “a subset of a device”, or “a whole device”, or “multiple
devices linked together into a disk array set” (Silber9).

T / F Microsoft Windows’ volume label ”C:” is usually reserved for the main disk. Label ”A:” and
"B:” were once reserved for the floppy disks.

T / F The implementation of File Systems on Virtual Machines is called Virtual File Systems (VFS
(Silber9).

T / F One disadvantage of linked allocation method (of disk space) is external fragmentation (Silber9).

T / F A unified buffer cache can not solve the problem of double caching (Silber9).

2. 2017-1

Circle or cross: ”T” if True — "F” if False.

T / F There is no external fragmentation in a file system with linked allocation.
T / F The Deadline I/O Scheduler (Linux) gives the Read Queues a higher priority.
T / F In a distributed file system, it is possible to write unnoticed by others for a short time.

T / F Doubling the block size in a indexed allocation disk space system will exactly double the maxi-
mum file size.

3. 2017-2

(Adapted from JJ Pfeiffer, " Writing a FUSE Filesystem: a Tutorial”, NMSU, licensed under a Creative Com-

mons Attribution-NonCommercial-ShareAlike 3.0 Unported License)

One of the real contributions of Unix (and later Linux) has been the view that ”everything is a (01)”. A
tremendous number of radically different sorts of objects, have been mapped to the (02). One of the more
recent directions this view has taken, has been (03) or also known as (04). A (05) is a program that listens
on a (06) for file operations to perform, and performs them. With FUSE, (07) users can create their own file
systems. The idea here is that users can write a FUSE file system to provide interaction with an object in
terms of a (08) and (09). A user just has to write codes that implements file operations like (10), (11), and

(12).

Match the number of the sentence above with these following phrases:

https://rms46.vlsm.org/2/198.pdf
https://os.vlsm.org/

Aneka Soal Ujian Sistem Operasi 03 FS Halaman 2 dari 10

directory structure file file abstraction filesystem operations
Filesystems in User Space FUSE FUSE filesystem non-privileged
open() read() socket write()

4. 2018-1

(1) or (2) is a (3) interface that lets (4) Unix-like users create their own (5) without modifying the kernel code.
It is particularly useful for writing (6) filesystems — which don’t actually store data themselves. It is available
for a variety of systems like (7), (8), and (9).

Match the number of the sentence above with these following phrases:

[] Android [] filesystems [} Filesystem in Userspace [} FUSE [] Linux

[] MacOS [] non-privileged [} software [} virtual [] Windows-10

5. 2018-2 (47%)

(01) Nonvolatile Memory (NVM) Devices is frequently used in a disk-drive-like container, in which called a
(02). Until today (2018), (03) are cheaper per megabyte than (04). (05) scheduling is generally used in NVMs,
because NVMs do not contain (06). (07) provides access to storage across a network, whereas (08) is a private
network connecting servers and storage units. A (09) is a pointer to an entry in the per-process file-system
table. A significant drawback of hash table is its (10). A log-based transaction-oriented file systems is also
known as a (11) file systems. The design goal of the Apple File System (APFS) is to run on (12) Apple devices.
The (13) is a temporary file system that is created in (14). These following information is required for mounting
a file system: (a) The name of the (15) containing file system, (b) file system (16) and (c) the (17). The (18)
layer provides mechanisms for uniquely representing files. When a user is mounting (19), his/her programs are
able to access the data using the (20) file operation system calls.

Match the number of the sentence above with these following phrases:

} all current (60%) } device (50%) [] file handle (10%) First Come First Served (60%)

fixed size (60%) Flash-memory-based (40%) FUSE (00%) Hard disk drives (50%)

mount point (30%)

solid-state disk (50%) solid-state disk (60%) standard (30%) storage-area network (90%)

[[]
[[]
[moving disk heads (40%) [} Network-attached storage (90%)
[[]
[[]

[
) [] []
| journaling (40%) [] []
) [] []
oo [Jumeon]

virtual file system (10%) volatile main memory(40%)

6. 2019-1 (45.8%)

This problem assumes that you are familiar with the ” Allocation Methods section” in Silberschatz’s book. Con-
sider a fictitious file system called ”Little Brother File System” (LBFS). LBFS is using the ”linked allocation
method”. LBFS consists of 12 blocks (block 0 to block 11). Each block size is 1kByte (1024 bytes). Inside each
block is a 7 1-byte pointer” that points to the next block number. The first block of a file pointer number can
be reached from the ”file directory”. The "file directory” is in block 0. Inside the "file directory” is a special
file called "FREE BLOCK LIST” which is a linked list to all available free blocks. Pointer number ”255” in
block 11 means "end of the linked list”.

Initially, ’FREE BLOCK LIST” holds blocks: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, and 11.

Aneka Soal Ujian Sistem Operasi 03 FS Halaman 3 dari 10

(a) (46%) Create a file "FILE1” of size 2kBytes (2048 bytes). The blocks for "FILE1” are taken from the
"FREE BLOCK LIST”. How many blocks are allocated for "FILE1” (excluding the directory block)?

(b) (47%) Specify the linked block list of "FILE1”. Starting from the directory block, "FILE1” will hold
blocks:

(c) (47%) Specify the remaining linked block list of file ”FREE BLOCK LIST”. Starting from the directory
block, ”FREE BLOCK LIST” will hold blocks:

You may or may not use these following diagram as a worksheet. It will not affect your grade!

]]] [

7. 2019-2 (44%)

This problem assumes that you are familiar with the last semester exam problem as well as ” Allocation Methods
section” in Silberschatz’s book. Consider a fictitious file system called ”Little Brother File System” (LBFS).
LBFS is using the "linked allocation method”. LBF'S consists of 12 blocks (Block#0 to Block#11). Each block
size is 1kByte (1024 bytes). The pointer size is 1 byte. Pointer number ”255” means ”end of the linked list”.

Block#0 is the ”Directory Block” (DB). The first DB entry is a special file called ”FREE BLOCK LIST”
which is a linked list to all available free blocks.

‘ Initially, ”FREE BLOCK LIST” holds blocks in sequence: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, and 11.

Aneka Soal Ujian Sistem Operasi 03 FS Halaman 4 dari 10
BLOCK#0 NEXT BLOCK#1 NEXT BLOCK#2 NEXT BLOCK#3 NEXT
FREE BLOCK LIST|

FILE#1
FILE#2
EEEEN

BLOCK#4 NEXT BLOCK#5 NEXT BLOCK#6 NEXT BLOCK#7 NEXT

BLOCK#8 NEXT BLOCK#9 NEXT BLOCK#10 NEXT BLOCK#11 NEXT

To create a new file:

e alocate "free file block(s)” from the ”Free Block (linked) List”.

e terminate the "free file block(s)” with pointer 255.

e place the "new file name” and the ”linked-list header” in a DB entry.

e file name examples are File#l, File#2 etc.

To delete a file:

e return the "file block(s)” to the end of "Free Block (linked) List”.
e put value 255 to the ”linked-list header” of the file DB entry.

(a) Create file "FILE#1” of size 2 kBytes (2048 bytes). The blocks for "FILE#1” are taken from the "FREE
BLOCK LIST”. How many blocks are allocated for "FILE#1” (excluding the directory block) (50%)?

(b) Specify the linked block list of "FILE#1” starting from the directory block (46%).

(c¢) Create another file (FILE#2) of size 1 kBytes (1024 bytes). How many blocks are allocated for "FILE#2”

(excluding the directory block) (37%)?
(d) Specify the linked block list of "FILE#2” starting from the directory block (30%).

(e) Delete "FILE#1”. Specify the linked block list of file ’FREE BLOCK LIST” starting from the directory

block (13%).

(f) Adjust the LBFS diagram (above) (42%).

8. 2020-1

This problem assumes that you are familiar with the last semester exam problem as well as ” Allocation Methods
section” in Silberschatz’s book. Consider a fictitious file system called ”Little Brother File System” (LBFS).
LBFS is using the ”linked allocation method”. LBFS consists of 12 blocks (Block#0 to Block#11). Each block
size is 1kByte (1024 bytes). The Pointer size is 8 bits and pointer number ”255” means ”end of the linked

list”.

Aneka Soal Ujian Sistem Operasi 03 FS Halaman 5 dari 10

Block#0 is the ”Directory Block” (DB). The first DB entry is a special file called ”FREE BLOCK LIST”
which is a linked list to all available free blocks.

Consider two functions of LBFS:

e myopen ("FileName”, ”BlockAllocation”)
— IF ”FileName” exists, just open it. Ignore ”BlockAllocation”.
— IF ”FileName” does NOT exists and ”FreeBlocks” > ”BlockAllocation”:
* allocate ”BlockAllocation” from the "Free Block (linked) List”.
x place the "FileName” and the ”BlockAllocation” header in a directory entry. ”FileName” exam-
ples are "File#1”, "File#2”, etc.
% terminate the ”FileName” linked list with 255.
* adjust the "Free Block (linked) List” header with the reminder (unused) blocks.
— ELSE do nothing.
e mydelete ("FileName”)
— IF ”FileName” exists:
* RETURN the "block(s)” of "FileName” to the end of ”Free Block (linked) List”.
*x Put value 255 to the ”Linked-List Header” of ”FileName” directory entry.

LBFS

BLOCK#0 NEXT BLOCK#1 NEXT BLOCK#2 NEXT BLOCK#3 NEXT

FREE BLOCK LIST]

FILE#1

FILE#2

BLOCK#4 NEXT BLOCK#5 NEXT BLOCK#6 NEXT BLOCK#7 NEXT

BLOCK#38 NEXT BLOCK#9 NEXT BLOCK#10 NEXT BLOCK#11l NEXT

Initially,

e "FREE BLOCK LIST” holds blocks in sequence: {1, 2, 3, 4, 5, 6, 7, 8,9, 10, 11}.
e "FILE#1” does not exists or: {}.
e "FILE#2” does not exists or: {}.

Aneka Soal Ujian Sistem Operasi 03 FS Halaman 6 dari 10

Use the curly braces format ”{}” like the initial example above. What will be the ”FREE BLOCK LIST”,
"FILE#1”, "FILE#2" after the following sequences.
(a) myopen ("FILE#1”,9)
e "FREE BLOCK LIST”:
o "FILE#1":
o "FILE#2":
(b) myopen ("FILE#2", 1)
e "FREE BLOCK LIST”:
o "FILE#1":
o "FILE#2":
(c) mydelete ("FILE#1")
e "FREE BLOCK LIST”:
o "FILE#1":
o "FILE#2":
(d) mydelete ("FILE#2")
e "FREE BLOCK LIST”:
o "FILE#1":
o "FILE#2":
(e) myopen ("FILE#1”, 5)
e "FREE BLOCK LIST”:
o "FILE#1":
o "FILE#2":
(f) Adjust the LBFS diagram (above). Please re-write ALL pointers!

9. 2022-2 (55.3%)

This problem assumes that you are familiar with the last semester exam problem as well as ” Allocation Methods
section” in Silberschatz’s book. Consider a fictitious file system called ”Little Brother File System” (LBFS).
LBFS is using the "linked allocation method”. LBF'S consists of 12 blocks (Block#0 to Block#11). Each block
size is 1kByte (1024 bytes). The Pointer size is 8 bits and pointer number ”255” means ”end of the linked
list”.

Block#0 is the "Directory Block” (DB). The first DB entry is a special file called ”FREE BLOCK LIST”
which is a linked list to all available free blocks.

Aneka Soal Ujian Sistem Operasi 03 FS Halaman 7 dari 10

LBFS

BLOCK#0 NEXT BLOCK#1 NEXT BLOCK#2 NEXT BLOCK#3 NEXT
FREE BLOCK LIST]
FILE#1
FILE#2
EEEESN
BLOCK#4 NEXT BLOCK#5 NEXT BLOCK#6 NEXT BLOCK#7 NEXT
BLOCK#38 NEXT BLOCK#9 NEXT BLOCK#10 NEXT BLOCK#11 NEXT

Consider two functions of LBFS:

e myopen ("FileName”, ”BlockAllocation”)
— IF 7FileName” exists, just open it. Ignore ”BlockAllocation”.
— IF ”FileName” does NOT exists and ”FreeBlocks” > ”BlockAllocation”:
* allocate ”BlockAllocation” from the "Free Block (linked) List”.
x place the "FileName” and the ”BlockAllocation” header in a directory entry. ”FileName” exam-
ples are "File#1”, "File#2”, etc.
* terminate the "FileName” linked list with 255.
* adjust the "Free Block (linked) List” header with the reminder (unused) blocks.
— ELSE do nothing.
e mydelete ("FileName”)
— IF "FileName” exists:
+ RETURN the "block(s)” of "FileName” to the end of ”Free Block (linked) List”.
*x Put value 255 to the ”Linked-List Header” of ”FileName” directory entry.

Initially,

e "FREE BLOCK LIST” holds blocks in sequence: {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}.

e "FILE#1” does not exists or: {}.

e "FILE#2” does not exists or: {}.
Use the curly braces format ”{}” like the initial example above. What will be the ”FREE BLOCK LIST”,
"FILE#1”, "FILE#2" after the following sequences.
(a) myopen ("FILE#1”,9) (61%)

Aneka Soal Ujian Sistem Operasi 03 FS

Halaman 8 dari 10

e "FREE BLOCK LIST”:
o "FILE#1":
o "FILE#2":

(b) mydelete ("FILE#1”) (68%)
e "FREE BLOCK LIST”:
e "FILE#1":
o "FILE#2":

(c) myopen ("FILE#1”, 9) (58%)
e "FREE BLOCK LIST”:
o "FILE#1":
o "FILE#2":

(d) myopen ("FILE#2”, 1) (44%)
e "FREE BLOCK LIST”:
e "FILE#1":
o "FILE#2":

(e) mydelete ("FILE#1”) (55%)
e "FREE BLOCK LIST”:
o "FILE#1":
o "FILE42":

(f) Adjust the LBFS diagram (above). Please re-write ALL pointers! (50%)

Aneka Soal Ujian Sistem Operasi 03 FS Halaman 9 dari 10

10. 2023-2 (HK:51%)

This problem assumes that you are familiar with the last semester exam problem as well as ” Allocation Methods
section” in Silberschatz’s book. Consider a fictitious file system called ”Little Brother File System” (LBFS).
LBFS is using the "linked allocation method”. LBF'S consists of 12 blocks (Block#0 to Block#11). Each block
size is 4kByte (4096 bytes). The pointer size is 4 byte. Pointer number ”255” means ”end of the linked list”.

Block#0 is the ”Directory Block” (DB). The first DB entry is a special file called ”FREE BLOCK LIST”
which is a linked list to all available free blocks.

‘ Initially, ”FREE BLOCK LIST” holds blocks in sequence: 1, 2, 3, 4, 5,6, 7, 8, 9, 10, and 11.

LBFS

BLOCK#0 NEXT BLOCK#1 NEXT BLOCK#2 NEXT BLOCK#3 NEXT
FREE BLOCK LIST

FILE#1

FILE#2

EEEER
BLOCK#4 NEXT BLOCK#5 NEXT BLOCK#6 NEXT BLOCK#7 NEXT
BLOCK#8 NEXT BLOCK#9 NEXT BLOCK#10 NEXT BLOCK#11 NEXT

To create a new file:

e alocate "free file block(s)” from the ”Free Block (linked) List”.
e terminate the "free file block(s)” with pointer 255.
e place the "new file name” and the ”linked-list header” in a DB entry.

e file name examples are File#l, File#2, etc.
To delete a file:

e return the "file block(s)” to the end of "Free Block (linked) List”.
e put value 255 to the ”linked-list header” of the file DB entry.

Aneka Soal Ujian Sistem Operasi 03 FS Halaman 10 dari 10

(a) Create file "FILE#1” of size 12 kBytes (12288 bytes). The blocks for "FILE#1” are taken from the "FREE
BLOCK LIST”. How many blocks are allocated for "FILE#1” (excluding the directory block) (45%)?

(b) Specify the linked block list of "FILE#1” starting from the directory block (45%).

(c) Create another file (FILE#2) of size 8 kBytes (8192 bytes). How many blocks are allocated for "FILE#2”
(excluding the directory block) (45%)?

(d) Specify the linked block list of "FILE#2” starting from the directory block (45%).

(e) Delete "FILE#1”. Specify the linked block list of file ”’FREE BLOCK LIST” starting from the directory
block (59%).

(f) Adjust the LBFS diagram (above) (38%).

