Operating System Exercises 2008-2010

Rahmat M. Samik-Ibrahim and Heri Kurniawan
http://rms46.vLSM.org/2/171.pdf

Contributors: Rahmat M. Samik-Ibrahim (VauLSMorg) and Heri Kurniawan (Faculty of Computer
Science, University of Indonesia).

Table of Contents

SO QUESTIONS. ...ttt ettt e e e e e bttt e e s e sae e e e e e e nee e e e e ennseeeeeeaeaaaans 3
Operating SYStEMS CONCEPLS. ... ittt e e et e e e e e e e e e e anbee e e e eannnneeeeeeeeeaens 5
Intellectual Property RIGNTS. e 5
PrOCESS SEALE L.ttt e e e b et e e s e et e e e e e nbe e e e e e nneeeaeeaas 5
PrOCESS SHALE 1.t e e e e e e e e e e e e e e e e e 6
ProCess SEAte Hl].........ooe e e e e e e e e e e 6
PrOCESS STAIE V...t e et e et e e et e e et e e e ne e e e nee e e e nee e e nteeeeeannnneeeeeeans 6
PrOCESS SHALE V... ittt s e e ettt e e et e e et e e e e ae e e e ante e e e aneeeeannee e e naeeeeeennnneneeeeans 7
ProCeSS SEALE V... ettt ettt e st e e e et e e e e e e ane e e e e e e e e e e e e e e e annne 7
Process State VII (2009).....co ittt e e e e et e e e e e enne e e e e e e nr e e e e e ennneeaeeanan 7
(0] od WIS 1ot o= 0] 11 o TSSO PPPPPPPPRT 8
0 L RS USSUR 9
0 L | RPN 9
0 L | PRSP 10
0 G PP 10
o 1 Y PR 11
0 G PP 12
T QYA | 2400 TP 13
YT LRI gL C== T P 14
SYNCNIONIZATION L.ttt e e ettt e e e e e e b e e e e e e e e e e e e e e e e e e aaaannnnes 15
3V e a1 o] 1= (o] o N 1 U PTPPPPPRNS 16
SYNCAIONIZATION 1. e e e e e e e e e e e e e e e e e e annnes 18
SYNCHIONIZALION V...t e e et e e et e e e s st e e e nseeesaneeeeenseeesnnnseneaeeans 21
DY T | o Yo < PEPRRPRPR 22
1Y/ T=T o g To] Y O PEPPP 22
1YY g Y | PP 22
1Y/ 1=T 0 0o o VA || PR PPPRRR 23
1Y 1=T 0 0 o] 2 O UPPPPPRPPPR 23
11T o 4o Y PP PPPPRRRRR 23
Linux Three-Level Page Table L.t 24
Linux Three-Level Page Table 1......... ... e 24
Linux Three-Level Page Tablet 24
Linux Three-Level Page Table 1V (2009)........ooo e 24
(21070 [0 VAN (o o] 111 11 0 4 1 PO PP PP PPPPPPPPRRRRR 25
=10 Te (o 1A AN (o To] 1110 N | OO PPUPPPPPRP 25
=T Te (o VAN [o To] 1110 T || PO P PPEEPPPPRP 25
E=TCe | DTS S (L@) T P RSP OT 26
=T |3 1= £ | PRSPPI 26
i F= T | D 1= S | | OO PPPPPPRPRRRRP 27

Operating Systems Exercises 2008—2010 -- © 2008-2013 Rahmat M. Samik-Ibrahim (VauLSMorg) and Heri Kurniawan (Fasilkom Ul) -- 1/36
Verbatim copying is permitted provided this notice copyright notice is preserved.
Revision: 531 -- 17 Jan 2013 URL: http://rms46.vLSM.org/2/171.pdf

HAIADISK 1V (2000)....- v eeveeeeeeeeeeeeeseesseeeeseseeeeeseseeessseeessesesessseesseseessesesssesesseeesseeeeseeeseseseseesesesenees 27

1] S =T (1 o < 27
1S S =T (1T o = 28
1= G = T 110 o 1= 28
Disk Partitions 1V (2009).......uueeeeeiiiiiiiiiie ettt e et e e e e e e e e s bt e e e e e e e e e e e e nneeeennnnnnnna 29
L= VZ] (=0 T P UEPPPRRPP 29
L= V] (=0 T 1 P UEERPRRPR 30
QLU L= = 1< 31

Operating Systems Exercises 2008—2010 -- © 2008-2013 Rahmat M. Samik-Ibrahim (VauLSMorg) and Heri Kurniawan (Fasilkom Ul) -- 2/ 36
Verbatim copying is permitted provided this notice copyright notice is preserved.
Revision: 531 -- 17 Jan 2013 URL: http://rms46.vLSM.org/2/171.pdf

Short Questions

a) Explain briefly, the two basic functions that Operating Systems perform!
b) One of the Operating Systems' basic function is to present the user with the equivalent of an
extended machine. Explain what an extended machine is!
c) What is a virtual machine? Give an example/illustration!
d) One of the Operating Systems' basic function is managing resources. Explain what an
managing resources is!
e) These following are fundamental principles of an Operating System:
(a) Processes, (b) Interprocess Communications, (c) Semaphores, (d) Message Passing, (e)
Schedulling Algorithm, (f) Input/Output (g) Deadlocks, (h) Device Drivers, (i) Memory
Management, (j) Paging Algorithm, (k) File Systems, and (I) Security & Protections.
f) Explain briefly three (3) fundamental principles from the list above!
g) What is a Real Time system? Give an illustration!
h) What is a Hard Real Time system? Give an illustration!
i) Whatis a Soft Real Time system? Give an illustration!
j) What are the differences between a System Program and an Application Program?
k) Give an example of a System Program!
l) Give an example of a Application Program!
m) What are the differences between a System Program and a System Call ? Give an
illustration (eg. "creating a directory")!
) How is Win32 API (Application Program Interface) related to a System Call .
) Explain what a Critical Region is!
p) Explain what a Race Condition is!
) Explain what a Busy Waiting is! How to overcome it?
r) What is a Deadlock ? Explain briefly!
s) How does Unix handle the Deadlock problem? Explain briefly!
t) Whatis a Starvation ? Explain briefly!
u) How does these following systems handle the deadlock problem:
i) Unix
ii) Windows
i) JVM
Explain briefly!
v) What is a binary semaphore?
w) Explain briefly, how to use binary semaphores for access control of a critical section!
X) What is a counting semaphore?
y) Explain briefly, how to use counting semaphores for access control of a resource with a finite
number of instances?
) Explain the differences between running a process in kernel mode and user mode?
aa) Give two examples/illustration of running a process in "kernel mode".
ab) Give two examples/illustration of running a process in "user mode".
ac) Explain what "multi-programming" means. Give an example!
ad) Explain what "multi-users" means. Give an example!
ae) Explain what a "process table" is. Give an illustration!
af) Explain what a "file system" is. Give an example!
ag) Explain what a "pipe" is. Give an illustration!
ah) Explain what a "socket" is. Give an illustration!
ai) In athree state process model ("running", "blocked", and "ready”), explain briefly about each

Operating Systems Exercises 2008—2010 -- © 2008-2013 Rahmat M. Samik-Ibrahim (VauLSMorg) and Heri Kurniawan (Fasilkom Ul) -- 3/ 36
Verbatim copying is permitted provided this notice copyright notice is preserved.
Revision: 531 -- 17 Jan 2013 URL: http://rms46.vLSM.org/2/171.pdf

process state.

aj) In athree state process model ("running", "blocked", and "ready”), explain why a "running"
state process transits to "blocked" state.

ak) In a three state process model ("running", "blocked", and "ready”), explain why a "running"
state process transits to "ready" state.

al) In athree state process model ("running", "blocked", and "ready”), explain why a "ready" state
process transits to "running" state.

am)In a three state process model ("running", "blocked", and "ready”), explain why a "blocked"
state process transits to "ready" state.

an) In a three state process model ("running", "blocked", and "ready”), explain why there is no
"blocked" state process transits to "running" state.

ao) In a three state process model ("running", "blocked", and "ready”), explain why there is no
"ready" state process transits to "blocked" state.

ap) What is a "CPU bound" process? Give an illustration!

aq) What is a "I/O bound" process? Give an illustration!

ar) What is a "preemptive" process? Give an illustration!

as) What is a "non-preemptive" process? Give an illustration!

at) Explain briefly the "Readers/Writers" problem. How to avoid "deadlock" in the
"Readers/Writers" problem.

au) Explain briefly the "Readers/Writers" problem. Where is the "critical section" of the
"Readers/Writers" problem.

av) Explain briefly the "Consumer/Producer" problem. How to avoid "deadlock" in the
"Consumer/Producer" problem.

aw) Explain briefly the Consumer/Producer problem. Where is the critical section of the
Consumetr/Producer problem.

ax) What are the differences and similarities between the Consumer/Producer problem and

Readers/Writers problem? Explain briefly!

Explain how a "preemptive" system can improve performance!

What will improve, if more "RAM" is added to a system? Give illustrations!

What will improve, if the "CPU" of the system is replaced with a faster one? Give illustrations!

What will improve, if the "DISK" of the system is replaced with a faster transfer rate? Give

illustrations!

bc) What will improve, if the "I/O Bus" of the system is replaced with a faster transfer rate? Give
illustrations!

bd) Which task should have more priority: writing to a disk or reading from a disk? Explain!

be) Explain how a higher "RPM rate" can improve disk transfer rate!

bf) Explain how a higher "disk density" can improve disk transfer rate!

bg) Explain how a DMA scheme can improve the system performance!

bh) What is a "Hard Real Time System"? Give an example!

bi) What is a "Soft Real Time System"? Give an example!

bj) Compare the performance between a "pipe" and "file". Explain!

bk) Compare the performance between a "pipe" and "socket". Explain!

bl) Compare the performance between a "socket" and "file"? Explain!

ay
az
ba
bb

S~ ~—

~ ~—

Operating Systems Exercises 2008—2010 -- © 2008-2013 Rahmat M. Samik-Ibrahim (VauLSMorg) and Heri Kurniawan (Fasilkom Ul) -- 4/ 36
Verbatim copying is permitted provided this notice copyright notice is preserved.
Revision: 531 -- 17 Jan 2013 URL: http://rms46.vLSM.org/2/171.pdf

Operating Systems Concepts

O O T QO

D

~—— ~— — ~— ~—

Describe briefly, what a system program is!

Give some examples of point 'a'".

Describe briefly, what a system call is!

Give some examples of point 'c'.

Is “disk format” a system program or a system call? Explain!

Intellectual Property Rights

Describe briefly the similarities between the Open Source Software and the Free Software
concept!

Describe briefly the differences between the Open Source Software and the Free Software
concept!

Describe briefly the differences between Free Software and Copyleft!

Give an example of a Free Software that is not Copyleft!

Process State |

» Att=0, all processes (P,P.,Ps,P,) areinthe'' RDY
The "RUN/W" (Wait) state patterns of each process are as
following:
« P; (2,9 ..
e P,(1,9,1,9,1,9,..)
“ Py (2,6) @
- P,(1,6,1,6,1,6, ...) ‘
Only one process can be in the "RUN" state at any time.

Many processes can be in the "W" and/or "RDY" states.

The "RDY" to "RUN" transition rules are as following:

" state.

|

’25 9, 2! 9,

’2! 65 2! 65

w>

Priority is for the process with the shortest waiting time (from recent arrival in "RDY").
If "tie", priority is given to the process with the smallest index.

If "RUN" is empty, a process can directly transit from "W" via "RDY" to "RUN".

Please fill the first 25 time units of this following Gantt Chart:

i) The state of each processes (P4, P2, P3, P,).

ii) Which process is in the RUN state (RUN).

iii) How many processes are in the Ready state (RDY).

RDY

2

24

P |

4

b ©

RDY

24

P2|

4

RDY

24

P3|

RDY

24

Pa |

24

RUN |

11 1

19

24

24

RDY |

11 1

19

25

Operating Systems Exercises 2008—2010 -- © 2008-2013 Rahmat M. Samik-Ibrahim (VauLSMorg) and Heri Kurniawan (Fasilkom Ul) -- 5/ 36

Verbatim copying is permitted provided this notice copyright notice is preserved.

Revision: 531 -- 17 Jan 2013 URL: http://rms46.vLSM.org/2/171.pdf

b)
c)

Calculate (in %), how much the CPU utilization is.
What is the average load (in %) of the RDY state?

Process State Il

There exists four processes, P1(0:2.0), P2(5:4.9), P3(10:2.9), P4(15:3.3); [where Pn(A:B) means
n=process number; A=starting time; B=CPU time] with this following CPU utilization table:

(/0 Wait = 60%) Multiprogramming Degree
1 2 3 4
CPU busy 40% 64% | 78% 88%
CPU busy per process 40% 32% | 26% 22%
Please draw a "processes/time relation" chart:
P1
P2
P3
P4
L L)
5 10 15 20 25 30

Process State lll

(See Process State Il) There exists four processes, P1(0:4.0), P2(10:4.9), P3(15:2.9), P4(20:3.3);
[where Pn(A:B) means n=process number; A=starting time; B=CPU time].

Process State IV

There exists four processes, A(90: 34.6), B(80: 50), C(70: 46), D(60: 28); [where X(Y:Z) means
X=process; Y=I/0 Wait (%); Z=CPU time] with this following CPU utilization table:

Multiprogramming Combination (%)
A| B|C|D|A+B|A+C | A+D | B+C | B+D | C+D | A+B+C | A+B+D | A+C+D | B+C+D | A+B+C+D
CPU utilization (process A) 10 93 | 93 | 9.2 8.3 8.1 7.8 7
CPU utilization (process B) 20 19 18 | 17 17 16 15 14
CPU utilization (process C) 30 28 26 25 25 23 22 21
CPU utilization (process D) 40 37 35 | 33 32 31 30 28

Operating Systems Exercises 2008—2010 -- © 2008-2013 Rahmat M. Samik-Ibrahim (VauLSMorg) and Heri Kurniawan (Fasilkom Ul) -- 6/ 36
Verbatim copying is permitted provided this notice copyright notice is preserved.
Revision: 531 -- 17 Jan 2013 URL: http://rms46.vLSM.org/2/171.pdf

All processes terminate at the same time. Please draw a "processes/time relation" chart and
calculate the starting time of all processes!

o 0O w>r

Process State V

(See Process State IV) There exists four processes, A(90: 0: 1), B(80: 10: 8), C(70: 20: 4.8), D(60:
30: 6.5); [where P(X:Y:Z) means P =process; X =I/0O Wait (%); Y = arrival time ; Z =CPU time]
with this following CPU utilization table above. Please draw a process/time relation at the diagram
above.

Process State VI

There exists four processes, A(90: 150: 7), B(80: 100: 29), C(70: 50: 68), D(60: 0: 131); [where
P(X:Y:Z) means P =process; X =I/O Wait (%); Y =arrival time; Z =CPU time] with this following
CPU utilization table above. Please draw a process/time relation at the diagram above.

Process State VIl (2009)

There exists four processes, A(90: 0: 1.7), B(80: 10: 8.7), C(70: 10: 6.9), D(60: 10: 5.8); [where
P(X:Y:Z) means P=process; X=I/0 Wait (%); Y=arrival time; Z=CPU time] with this following CPU
utilization table:

Multiprogramming Combination (%)
A B|C| D/ A+B |A+C|A+D|B+C|B+D| C+D | A+B+C | A+B+D | A+C+D | B+C+D | A+B+
C+D
CPU utilization per proses A 10| - | - | - | 93 | 93|92 | - - - 8.3 8.1 7.8 - 7
CPU utilization per prosesB | - |20 - | - | 19 - - 18 | 17 - 17 16 - 15 14
CPU utilization per prosesC | - | - |30 - - 28 - 26 - 25 25 - 23 22 21
CPU utilization per prosesD | - | - | - |40 - - 37 - 35 | 33 - 32 31 30 28

Please draw a process/time relation at following:

A
B
C . .
Operating Systems EXercises
D Revision: 531 -- 77 Jan 2013 URL: http://rms46.vLSM.org/2/171.pdf
| Il A NI N R A NS EEE N E NN E NN E E NN N EE NN EE N EEEEEEEENE N

CPU Scheduling

An Operating System uses multilevel queue to schedule the processes execution. A multilevel
gueue scheduling consists of three queues ordered by priority level (high, middle, and low). Each
queue has different scheduling algorithm.

+ First Queue (Queue A) uses SJF Preemptive scheduling and eligible for process A1, A2, ..., An

» Second Queue (Queue B) uses Round Robin scheduling with time quantum = 2ms and eligible
for process B1, B2, ..., Bn

» Third Queue (Queue C) uses First Come First Serve (FCFS) scheduling and eligible for process
C1,C2,...,Cn

CPU will execute those queues under the following rules:

» CPU execute the queue based on its priority. If each queue is not empty, the queue that has high
priority (Queue A) will be executed first. After that, CPU executes middle priority queue, then low
priority queue.

« If high priority queue is empty, CPU executes process at other less priority queue

* If there is a process entering an empty high priority queue while CPU is executing process in
other less priority queue, CPU must change its execution to high priority queue to service the
process. CPU may move to other less priority queue if no process waiting in high priority queue.

High Priority ——P» Queue A SJF Preemptive
Middle Priority ——» Queue B Round Robin, T. Quantum = 2ms
Low Priority ——P» Queue C FCFS
Process A1 | A2 A3 A4 | B1|B2| B3 C1 C2 | C3
Arrival Time 0| 2|8 |1
Burst Time (ms) 4 12,1 4

Draw the gantt chart and determine the total waiting time of each queue. BE CAREFULL in
writing the process starting time on each Gantt chart.

Queue A (QA)
Total Waiting Time (QA) =
Queue B (QB)
Total Waiting Time (QB) =
Queue C (QC)

Operating Systems Exercises 2008—2010 -- © 2008-2013 Rahmat M. Samik-Ibrahim (VauLSMorg) and Heri Kurniawan (Fasilkom Ul) -- 8/ 36
Verbatim copying is permitted provided this notice copyright notice is preserved.
Revision: 531 -- 17 Jan 2013 URL: http://rms46.vLSM.org/2/171.pdf

Total Waiting Time (QC) =

Operating Systems Exercises 2008—2010 -- © 2008-2013 Rahmat M. Samik-Ibrahim (VauLSMorg) and Heri Kurniawan (Fasilkom Ul) -- 9/ 36
Verbatim copying is permitted provided this notice copyright notice is preserved.
Revision: 531 -- 17 Jan 2013 URL: http://rms46.vLSM.org/2/171.pdf

Fork |

001
002
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021

/**/

/* doublefork (c) 2006 Rahmat M. Samik-Ibrahim, GPL-like */
/**/

#include <stdio.h>

#include <stdlib.h>
JRE Ak kkkkkkkkkkkhkkkkkkkhkkkkkkhhkkkkkhkhkhkkkkkhkhkhk** main *%*/
main ()
{
int pidl, pid2, pid3, pid4;
pidl=(int) getpid(); /* what is my PID ? */
pid2=(int) fork(); /* split parent and child *x/
wait (NULL) ; /* parent wait for its child */

pid3=(int) fork();

wait (NULL);

pid4=(int) getpid() ;

printf (" [%4d] [%4d] [%4d] [%4d]\n", pidl, pid2, pid3, pid4);
}

/***/

Suppose the process ID (PID) is 5000. Assume that each new child process will have the next
sequential PID that is available (5001, 5002, etc.). Please write down the output of these

pro

cesses!

Fork Il

Ple

01
02
03
04
05
06
08
10
11
12
13
14
15
16
17
18
19

ase write down the output of this following C-program "isengfork1"!

/**/

/* isengforkl (c)2007 Rahmat M. Samik-Ibrahim, GPL-like */
/**/
#include <sys/types.h>
#include <stdio.h>
#include <unistd.h>
main () {

int ii=0;

if (fork() > 0) ii++;

wait (NULL) ;

if (fork() == 0) ii++;

wait (NULL) ;

if (fork() < 0) ii++;

wait (NULL) ;

printf ("Result = %3.3d \n",ii);

} LT

Operating Systems Exercises 2008—2010 -- © 2008-2013 Rahmat M. Samik-Ibrahim (VauLSMorg) and Heri Kurniawan (Fasilkom Ul) -- 10/ 36
Verbatim copying is permitted provided this notice copyright notice is preserved.
Revision: 531 -- 17 Jan 2013 URL: http://rms46.vLSM.org/2/171.pdf

Fork Il

Please write down the output of this following C-program "isengfork1"!

01
02
03
04
05
06
08
09
10
11
12
13
14
15
16
17
18

/**/

/* isengfork2 (c)2008 Rahmat M. Samik-Ibrahim, GPL-like */
/**/
#include <sys/types.h>
#include <stdio.h>
#include <unistd.h>
main ()
{
int ii=2;
if (fork() > 0) ii--;
wait (NULL) ;
if (fork() == 0) ii--;
wait (NULL) ;
if (fork() < 0) ii--;
wait (NULL) ;
printf ("Result = %3.3d \n",ii);
}

19 / ***/

Fork IV

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

a)

/* cascafork (c) 2008 Rahmat M. Samik-Ibrahim, GPL-like */
/*** */
#include <sys/types.h>

#include <sys/wait.h>

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#define DISPLAY "This is PID[%5.5d]\n"
/*** main **x */

main (void) {

if (fork() '= (pid_t) 0) {
sleep (1) ;
if (fork() == (pid_t) 0) {
sleep (1) ;
if (fork() '= (pid_t) 0) {
sleep (1) ;
if (fork() == (pid_t) 0) {
sleep (1) ;
}
}
}
}
printf (DISPLAY, (int) getpid())
waitpid(-1,NULL,O0);
waitpid(-1,NULL,O0) ;
exit (0);
}

/**/

Suppose the process ID (PID) is 5000. Assume that each new child process will have the next
sequential PID that is available (5001, 5002, etc.). Please write down the output sequences of
these processes!

What happen if we delete line 12, 14, 16, and 18 [sleep()] ?

Operating Systems Exercises 2008-2010 -- © 2008-2013 Rahmat M. Samik-Ibrahim (VauLSMorg) and Heri Kurniawan (Fasilkom Ul) -- 11 /36
Verbatim copying is permitted provided this notice copyright notice is preserved.
Revision: 531 -- 17 Jan 2013 URL: http://rms46.vLSM.org/2/171.pdf

c) What happen if we delete line 24 and 25 [waitpid(-1, NULL, 0)]?

Fork V

Please write down the output of program "fork6"! Assume the first PID is 5000.

01 /* fork6.c (c) 2008 Rahmat M. Samik-Ibrahim +v.08.11.04.00

02
03
04
05
06

*
*
*
*

getpid() = get the current PID (Process ID).

fork () = creates a new process by duplicating.
wait() = wait until one of its children terminates.
GFDLike License */

07 #include <stdio.h>
08 #include <sys/types
09 #include <unistd.h>

10 #define STRING1l "PID[%5.
11 #define STRING2 "PID[%5.
12 #define STRING3 "PID[%5.

13

14 main()

15 {
16
17
18
19
20
21
22
23
24
25 }

printf (STRINGI1,

if (fork() == 0)
fork () ;

wait (NULL) ;

fork () ;

wait (NULL) ;

printf (STRING2,

wait (NULL) ;

printf (STRING3,

.h>

(int)

(int)

(int)

5d] starts.\n"
5d] passes.\n"
5d] terminates.\n"

getpid());

getpid());

getpid());

Operating Systems Exercises 2008—2010 -- © 2008-2013 Rahmat M. Samik-lbrahim (VauLSMorg) and Heri Kurniawan (Fasilkom Ul) -- 12/ 36

Verbatim copying is permitted provided this notice copyright notice is preserved.
Revision: 531 -- 17 Jan 2013 URL: http://rms46.vLSM.org/2/171.pdf

Fork VI

One process has one PPID. PPID stands for the Parent Process ID. Below are the relation

between PID and PPID:

PID =0202 PID =0201
PPID = 0200 FPID = 0200

Look at the following C program below. If the initial PID of this program is 0401 and the PPID of
0401 is 0400, print the OUTPUT of the program.

//Forkloop.c

//getpid() : return the Process ID (PID)
//getppid() : return the Parent Process ID (PPID)

#include <sys/types.h>

#include <stdio.h>

#include <unistd.h>

##define STR "PID = %4.4d, PPID =

int main()
{
int count=0, loop=3, val=4;
while (count != loop)
{
if(fork()>0) val--;
wait (NULL) ;
count++;

}

%$4.4d, val = %4.4d\n"

printf (STR, getpid(), getppid(), val);

Operating Systems Exercises 2008—2010 -- © 2008-2013 Rahmat M. Samik-Ibrahim (VauLSMorg) and Heri Kurniawan (Fasilkom Ul) -- 13/ 36

Verbatim copying is permitted provided this notice copyright notice is preserved.
Revision: 531 -- 17 Jan 2013 URL: http://rms46.vLSM.org/2/171.pdf

Fork VII (2009)

/* triplefork.c (c) 2009 Rahmat M. Samik-Ibrahim, GPL-like */
/* khkhkhkhkhkhkhkhkhkhkhk dhhkhhhhkh */

#include <sys/types.h>

#include <sys/wait.h>

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

##define DISPLAY \

"mypid[%$3.3d] - £1[%3.3d] - £2[%3.3d] - £3[%3.3d]\n"
/*** main ** */

main (void) {

}

Please write down the tree while matching the program output of "triplefork” (the first mypid is
401). Remember that these are concurrent processes! DO NOT ASSUME ANY PROCESS

int £1, £f2, £3, mypid;
fl = (int) fork():;
sleep (1) ;

f2 = (int) fork();
sleep(2) ;

£f3 = (int) fork():;
sleep(3) ;

mypid=(int) getpid() ;
printf (DISPLAY, mypid, £f1, £f2, £3);
waitpid(-1,NULL,O0) ;
waitpid(-1,NULL,O0) ;
waitpid(-1,NULL,O0);
exit (0);

SEQUENCE!

PROGRAM OUTPUT

mypidl 1 — £ir4o=l1 — Ff£F=[oo0O0l —
mypidl 1 — £ir4o=l1 — Ff£F=[oo0O0l —
mypidl 1] — £i1[©000]l] — F£F=[OO0OO1 —
mypid[1 — £1[00O0O] — £=Z[O0OO0] -—
mypidl] — £1 [o00O0O] — f£=[404] -—
mypdidl 1 — £1 [0OO0O0] — £z r[4ao04a] —
mypaidl] — £1[40=2]1] — £=2[403] —
mypidl 1 — £ir4o=l1 — Ff£=[4031 —

Operating Systems Exercises 2008—2010 -- © 2008-2013 Rahmat M. Samik-Ibrahim (VauLSMorg) and Heri Kurniawan (Fasilkom Ul) --

3

3

=

=

3

£33

£33

3

[aos]
[OO0O]
[a4ao7]
[OO0O]
[A06]
[OOO]
(405]
[OO0O]

14/ 36

Verbatim copying is permitted provided this notice copyright notice is preserved.
Revision: 531 -- 17 Jan 2013 URL: http://rms46.vLSM.org/2/171.pdf

MultiThreads

009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068

// MultiThreads (c)2006 Rahmat M. Samik-Ibrahim, GPL-like //
// khkhkkkhkkkhkhkkhkhkkhkhkkhkkkhkkkhkkkhkkkhkkkhkkkkkk MultiThreads * % % //
public class MultiThreads ({
public static void main(String args[]) {
Engine engine = new Engine (THREAD COUNT) ;
Thread[] player new Thread[THREAD COUNT] ;
for (int ii=0; ii<THREAD COUNT ; ii++) {
player[ii] = new Thread(new Player (ii,engine)) ;
player[ii] .start();

}
}
private static final int THREAD COUNT = 4;

}

// khkhkhkhkhkkkkkkhkhkhkhkhkhkhkhkhkkhkhkhhkhkhkhkhkkkhkhkhkhhkhkhkkkkkk Player * %k % //

class Player implements Runnable ({

Player (int count, Engine eng) {
engine = eng;
player count = count;

}

public void run() {
engine.play (player count);

}

private Engine engine;

private int player_ count;

}

// hhkkhkkhkkhkkkhkkhkkhkhkkhkhkkhkhkhkkhkhkhkkhkhkhkkhkkhkkhkkhkkhkkhkhkkhkhkkkxkk Engine * k% //

class Engine {
public Engine (int count) ({
idx = count-1;
control = new Semaphore[count];
for (int ii=0; ii<count ; ii++) {
control[ii] = new Semaphore() ;
}
}
public void play(int ii) ({
if (ii < idx) {
control[ii+l] .acquire();
}
System.out.println("Player " + ii + " is up...");
control[ii] .release() ;
}
private int idx;
private Semaphore[] control;

}

// hhkkhkkkhkkkhkkkhkkkhkkkhkkkhkhkkhkhkkhkhkkhkhkkhkhkkkhkkx semaphore * k% //

class Semaphore {
public Semaphore() {
value = 0;
}
public synchronized void acquire() ({
while (value == 0) {
try { wait(); }
catch (InterruptedException e) { }
}
value--;
}
public synchronized void release() ({
value++;
notify () ;

Operating Systems Exercises 2008—2010 -- © 2008-2013 Rahmat M. Samik-Ibrahim (VauLSMorg) and Heri Kurniawan (Fasilkom Ul) -- 15/ 36
Verbatim copying is permitted provided this notice copyright notice is preserved.
Revision: 531 -- 17 Jan 2013 URL: http://rms46.vLSM.org/2/171.pdf

069 private int value;
070 }

a) Please write down the output of this java program!

b) Please explain briefly, the purpose of using the semaphores in this java program!

c) Please, slightly modify the "Engine class" so that the output sequence will be the opposite of
point (a). (Hint: 3 lines only, lah! :-).

Synchronization |

a) How many semaphore objects are used in this following Java program? Name them one by
one!

b) Write down the output of the Java program!

001 /**/

002 /* sakit (c)2007 Rahmat M. Samik-Ibrahim, GPL-like */
003 /hkkkkkkhkhkhhkhkhhhhhhhhhhhkhkhhhhhhhkkhhhkkkhkkkkkkkkkkkkkkkk* /
004

005 public class Sakit {

006 public static void main(String args[]) {

007 Engine engine = new Engine(strings, strseq);
008 Thread[] printer = new Thread[strings.length];
009 for (int ii = 0; ii < strings.length; ii++) {

010 printer[ii]=new Thread(new Printer(ii, engine));
011 printer[ii] .start();

012 }

013 }

014 private final static String strings|[]=

015 {"Bapak", "Budi", "kepala", "si", "sakit"};

0le6 private final static int strseql[]= {0,3,1,4,2};
017 }

020 class Engine {
021 Engine (String str[],int strseq[]) {

022 this.str = str;

023 this.strseq = strseq;

024 semaphore = new Semaphore[str.length];
025 for (int ii=0; ii<str.length; ii++) ({
026 semaphore[ii] = new Semaphore() ;

027 }

028 sequence = 0;

029 semaphore[strseq[sequence++]] .release() ;
030 }

031 public void go(int ii) {

032 semaphore[ii] .acquire() ;

033 System.out.print(str[ii] + " ");

034 if (sequence < strseq.length)

035 semaphore[strseq[sequence++]] .release() ;
036 else

037 System.out.println() ;

038 }

039 private Semaphore[] semaphore;

040 private String str[];

041 private int strseql];

042 private int sequence;

043 }

046 class Printer implements Runnable {

047 Printer (int ii, Engine ee) {

048 number = ii;

049 engine = ee;

050 }

051 public void run() ({

052 engine.go (number) ;

Operating Systems Exercises 2008—2010 -- © 2008-2013 Rahmat M. Samik-Ibrahim (VauLSMorg) and Heri Kurniawan (Fasilkom Ul) -- 16/ 36
Verbatim copying is permitted provided this notice copyright notice is preserved.
Revision: 531 -- 17 Jan 2013 URL: http://rms46.vLSM.org/2/171.pdf

053 }

054 private int number;
055 private Engine engine;
056 }

057

058 /**/
059 class Semaphore {

060 public Semaphore () { value 0; }

061 public Semaphore (int v) { value = v; }

062 public synchronized void acquire() ({

063 while (value == 0) {

064 try { wait(); }

065 catch (InterruptedException e) { }
066 }

067 value--;

068 }

069 public synchronized void release () ({
070 value++;

071 notify() ;

072 }

073 private int value;

074 }

Synchronization Il

01 /**/

02 /* MultiStrings (c) 2008 Rahmat M. Samik-Ibrahim, GPL-like *x/
03 /* S$Date: 2008/06/25 12:12:30 $ S$SRevision: 1.1 § */
04 /**/
05

06 public class MultiStrings ({

07 public static void main(String args[]) {
08 Engine engine = new Engine(strings, strseq);
00 Thread[] printer = new Thread[strings.length];
00
09 for (int ii = 0; ii < strings.length; ii++) {
10 printer[ii]=new Thread(new Printer (ii, engine));
11 printer[ii] .start() ;
12 }
13 }
14 private final static String strings[]= { "a", "an", "and",
15 "as", "Design", "Extended", "Implementation", "Machine",
16 "Manager", "Operating", "Resource", "Systems", "The"};
17 private final static int string_array[][] =
18 {{12,9,11,3,1,5,7}, {12,9,11,3,0,10,8}, {9,11,4,2,6}};
19 /* NameA=0 NameC=1 NameE=2
NameB=0 NameD=1 NameF=2 */
21 private final static int strseq[] = string array[VALUE];
22 }
23
24 /*

25 /**/

26 class Engine {
27 Engine (String str[],int strseq[]) {

28 this.str = str;

29 this.strseq = strseq;

30 semaphore = new Semaphore[str.length];
31 for (int ii=0; ii<str.length; ii++) ({

32 semaphore[ii] = new Semaphore() ;

33 }

Operating Systems Exercises 2008—2010 -- © 2008-2013 Rahmat M. Samik-Ibrahim (VauLSMorg) and Heri Kurniawan (Fasilkom Ul) -- 17/ 36
Verbatim copying is permitted provided this notice copyright notice is preserved.
Revision: 531 -- 17 Jan 2013 URL: http://rms46.vLSM.org/2/171.pdf

34 display = true;

35 sequence =0;

36 semaphore|[strseq[sequence++]] .release() ;
37 }

38 public void go(int ii) {

39 semaphore[ii] .acquire() ;

40 if (display) {

41 System.out.print(str[ii] + " ")

42 if (sequence < strseq.length) {

43 semaphore|[strseq[sequence++]] .release() ;
44 } else {

45 System.out.println() ;

46 display = false;

47 for (int jj=0;jj<str.length;jj++) {
48 semaphore[j]j] .release() ;

49 }

50 }

51 }

52 }

53 private Semaphore[] semaphore;

54 private String str[];

55 private int strseq[];

56 private int sequence;

57 private boolean display;

58 }

60 /**/

61 class Printer implements Runnable {

62 Printer (int ii, Engine ee) {
63 number = ii;

64 engine = ee;

65 }

66 public void run() ({

67 engine.go (number) ;

68 }

69 private int number;

70 private Engine engine;

71 }

73 /**/
74 class Semaphore {

75 public Semaphore () { value = 0; }
76 public Semaphore(int v) { value = v; }
77 public synchronized void acquire() ({
78 while (value == 0) {

79 try { wait(); }

80 catch (InterruptedException e) { }
81 }

82 value--;

83 }

84 public synchronized void release() {
85 value++;

86 notify () ;

87 }

88 private int value;

89 }

90 /**/

a) See line 19 for the "VALUE" of line 21. What is the output of this program?

b) What is the value of "strseqg.length” in line 427

c) What is the value of "strlength" in line 477

d) What is the purpose of the loop in line (47 to 49)? What happen if we delete those lines?

Operating Systems Exercises 2008—2010 -- © 2008-2013 Rahmat M. Samik-Ibrahim (VauLSMorg) and Heri Kurniawan (Fasilkom Ul) -- 18/ 36
Verbatim copying is permitted provided this notice copyright notice is preserved.
Revision: 531 -- 17 Jan 2013 URL: http://rms46.vLSM.org/2/171.pdf

Synchronization lll

001 // (c) 2003 Silberschatz, Galvin and Gagne.
002 // Slightly modified by Rahmat M. Samik-Ibrahim

003

004 import java.util.*;

005

006 public class ProducerConsumer

007 {

008 public static void main(String args[]) {

009 BoundedBuffer server = new BoundedBuffer () ;

010 Thread producerThread = new Thread(new Producer (server)) ;
011 Thread consumerThread = new Thread(new Consumer (server)) ;
012

013 producerThread.start() ;

014 consumerThread.start () ;

015 }

016 }

017

018 class Producer implements Runnable

019 {

020 private int prod time;

021 private BoundedBuffer buffer;

022 private static final int DEFAULT TIME = 3;

023

024 public Producer (BoundedBuffer bf) { init(bf, DEFAULT TIME); }

025 public Producer (BoundedBuffer bf, int time) { init(bf, time); }
026

027 private void init (BoundedBuffer bf, int time) {

028 buffer = bf;

029 prod_time = time;

030 }

031

032 public void run() ({

033 Date message;

034 while (true) {

035 System.out.println ("Producer processing") ;

036 DelayUtilities.process_time (prod time) ;

037 message = new Date() ;

038 System.out.println ("Producer produced " + message) ;
039 buffer.insert (message) ;

040 }

041 }

042 }

043

044 class Consumer implements Runnable

045 {

046 private BoundedBuffer buffer;

047 private int cons_time;

048 private static final int DEFAULT TIME = 3;

049

050 public Consumer (BoundedBuffer bf) { init(bf, DEFAULT TIME); }
051 public Consumer (BoundedBuffer bf, int time) { init(bf, time);
052

053 public void run() ({

054 Date message;

055 while (true) {

056 System.out.println ("Consumer processing") ;

057 DelayUtilities.process_time (cons_time) ;

058 System.out.println("Consumer wants to consume.");
059 message = (Date)buffer.remove() ;

060 }

061 }

Operating Systems Exercises 2008—2010 -- © 2008-2013 Rahmat M. Samik-Ibrahim (VauLSMorg) and Heri Kurniawan (Fasilkom Ul) -- 19/ 36
Verbatim copying is permitted provided this notice copyright notice is preserved.
Revision: 531 -- 17 Jan 2013 URL: http://rms46.vLSM.org/2/171.pdf

062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

private void init(BoundedBuffer bf, int time) ({
buffer = bf;
cons_time = time;

}

class BoundedBuffer

{
private static final int DEFAULT SIZE = 2;

private Semaphore mutex, empty, full;

private int count, in, out, buffer size;
private Object[] buffer;

public BoundedBuffer (int bfsize) { init(bfsize); }
public BoundedBuffer () { init (DEFAULT_ SIZE); }

public void insert(Object item) ({
empty.acquire () ;
mutex.acquire() ;
++count;
buffer[in] = item;
in = (in + 1) % buffer_ size;
System.out.print ("INSERT: " + item);
if (count == buffer_ size)
System.out.println (" Buffer Size (FULL)");
else
System.out.println(" Buffer Size (" + count + ")");
mutex.release() ;
full.release();
}
public Object remove() {
full.acquire() ;
mutex.acquire() ;
--count;
Object item = buffer[out];
out = (out + 1) % buffer size;
System.out.print ("REMOVE: " + item);
if (count == 0)
System.out.println (" Buffer Size (EMPTY)");
else
System.out.println(" Buffer Size (" + count + ")");
mutex.release() ;
empty.release() ;
return item;

}

private void init(int bfsize) ({

count = 0;

in =0;

out = 0;

buffer size = bfsize;

buffer = new Object[bfsize];
mutex = new Semaphore (1) ;
empty = new Semaphore (bfsize) ;
full = new Semaphore (0) ;

}

class Semaphore

{

private int value;

public Semaphore (int value) { this.value = value; }

Operating Systems Exercises 2008—2010 -- © 2008-2013 Rahmat M. Samik-lbrahim (VauLSMorg) and Heri Kurniawan (Fasilkom Ul) -- 20/ 36
Verbatim copying is permitted provided this notice copyright notice is preserved.
Revision: 531 -- 17 Jan 2013 URL: http://rms46.vLSM.org/2/171.pdf

127
128 public synchronized void acquire () ({

129 while (value <= 0) {

130 try { wait(); }

131 catch (InterruptedException e) { }
132 }

133 value--;

134 }

135

136 public synchronized void release () ({
137 ++value;

138 notify () ;

139 }

140 }

141

142 class DelayUtilities

143 {

144 public static void process_time() { process_time (PROCESS TIME); }
145 public static void process_time (int duration) ({

146 int sleeptime = (int) (duration * Math.random())

147 try { Thread.sleep(sleeptime*1000); }

148 catch (InterruptedException e) ({}

149 }

150 private static final int PROCESS_TIME = 5;

151 }

Analyze this ProducerConsumer.java program.

a) Modify class ProducerConsumer (ONLY) so that these following variables can be easily
assigned: “Bounded Buffer Size (BBS)”, “Producer Process Time (PPT)”, “Consumer Process
Time (CPT)”. For example, BBS=3, PPT=4; CPT=5. Do not re-write the class, just explain the
changes!

b) Replace class “ProducerConsumer” with “ProducerDistributorConsumer” with two buffers and
add a new class “Distributor”. The first buffer is between Producer and Distributor and the
second class is between Distributor and Consumer.

Operating Systems Exercises 2008—2010 -- © 2008-2013 Rahmat M. Samik-Ibrahim (VauLSMorg) and Heri Kurniawan (Fasilkom Ul) -- 21/ 36
Verbatim copying is permitted provided this notice copyright notice is preserved.
Revision: 531 -- 17 Jan 2013 URL: http://rms46.vLSM.org/2/171.pdf

Synchronization IV

There exist four processes P1(S1), P2(S2, S3), P3(S4), P4(S5), where Pn(Sx) means Pn=process

number, Sx=Statement x belongs to Pn.

CPU will execute the process statements based on the following order :

1. CPU executes S1
2. CPU executes S5
3. CPU executes S2

4. CPU may execute S3, S4 or both at the same time

S1

A
th

S3
S2 <
S4

Note: when CPU executes S1 of P1, other process will wait. After executing S1, CPU executes S5

of P4 and soon.

To achieve those execution order, write the solution code by using wait(S) and signal(S) method.
Determine how many semaphore objects you will use. Implement your code on the empty space

below:

/linitialize your semaphore objects here

P2

P3 P4

//P1 codes //P2 codes

//P3 codes //P4 codes

Operating Systems Exercises 2008—2010 -- © 2008-2013 Rahmat M. Samik-lbrahim (VauLSMorg) and Heri Kurniawan (Fasilkom Ul) -- 22 /36

Verbatim copying is permitted provided this notice copyright notice is preserved.
Revision: 531 -- 17 Jan 2013 URL: http://rms46.vLSM.org/2/171.pdf

Deadlock

There exist four processes in the system. Total resources in the system are P(13), Q(19), R(15).
The process sequence : <P2, P4, P5, P1, P3>

By using deadlock avoidance, please specify :

a) The need table

b) Is the system safe or not ? Prove it!

c) What happen to the system if P3 ask one more resource R ? is it safe or not ?

Processes Allocation Maximum Available
P Q R P Q R |P Q R
P1 2 2 1 11 16 14 |2 7 3
P2 3 2 1 4 8
P3 2 2 2 5 7
P4 4 5 6 9 11 10
P5 o 1 2 3 2 4

Memory |

Explain briefly these following terms:
a) logical address

b) demand paging

page fault

reference string

copy on write

o O
S~— N = N

D

Memory I

A system has specifications :

» Total page in logical memory: 8

 Total frame in physical memory: 16

» Page size: 128 byte

* Number of process: 16

* One Page Table Entry (PTE) size: 2 byte

* Measurement: 1kb= 210 byte

A page table entry has the following format: (page number, frame number). The entry list of page
table:

(0,0), (1,8), (2,11), (3, 6), (4, 15), (5, 1), (6, 7), (7, 10)
a) Determine the last address of logical memory! (the address starts from 0)

Operating Systems Exercises 2008—2010 -- © 2008-2013 Rahmat M. Samik-lbrahim (VauLSMorg) and Heri Kurniawan (Fasilkom Ul) -- 23 /36
Verbatim copying is permitted provided this notice copyright notice is preserved.
Revision: 531 -- 17 Jan 2013 URL: http://rms46.vLSM.org/2/171.pdf

b) Determine the last address of physical memory! (the address starts from 0)

c) Determine the physical address for logical address 800!

d) Determine the logical address for physical address 2000!

e) How many bytes needed to put the entire processes’ page table in physical memory?
Memory Il

A system has specification:

* Page replacement algorithm: Least-recently-used (LRU)

* Available frame: 2

» Reference string : 0,1, 3,4,5,5,8,0,3,3

a) How many page faults exist?

b) If LRU is implemented using stack, write the stack value for each access on reference string.

c) How many page faults exist if the system uses FIFO algorithm?

Memory IV

A system has specification:

» Total available physical memory frame : 300

» Total processes : 6

» The frame needed by each process has the following format (Process ID, Total frame).

* List of needs :

(0, 40), (1, 60), (2, 100), (3, 20), (4, 80), (5, 100)

Each process requires some frames to run. Unfortunately the total available frames are limited.

The system can not supply all the requested frames to every process. There are two simple

techniques to solve this problem, Equal Allocation and Proportional Allocation .

a) Determine total frames given to each process if the system uses equal allocation mechanism!

b) Determine total frames given to each process if the system uses proportional allocation
algorithm!

Memory V

A system uses demand paging technique to increase the efficiency of memory utilization. In 1000
time access, 400 page faults occur. Determine the Effective Access Time (in nanoseconds) of
Demand Paging if: memory access time = 100ns and page-fault time = 8ms.

Operating Systems Exercises 2008—2010 -- © 2008-2013 Rahmat M. Samik-Ibrahim (VauLSMorg) and Heri Kurniawan (Fasilkom Ul) -- 24/ 36
Verbatim copying is permitted provided this notice copyright notice is preserved.
Revision: 531 -- 17 Jan 2013 URL: http://rms46.vLSM.org/2/171.pdf

Linux Three-Level Page Table |

This following, 008 0200 8004), is a valid 43 bit Linux Virtual Address with three level page
tables: Global Directory (10 bits), Page Middle Directory (10 bits), and Page Table (10 bits).

a) Convert the base-16 address above into base-2.
b) Complete the following diagram with its table names, indexes (in base-16), pointers (in arrow
form), and memory contents (whatever/random). You may use dotes "..." for "and so on".

c) What is the size of a memory frame?

RN T T TN T SN T NN AN NN NN TN TN SN TN NN TN NN NN N SN TN SN TN NN SN T SN SN SN NN SN NN SN TN SN NN T NN SN NN N |
L] L] T L 1

43 40 32 24 16 8 0
index
index index index content
pointer pointer pointer

Linux Three-Level Page Table Il

What if the address is 004 0100 4002 ex,?

Linux Three-Level Page Table lii

What if the address is 000 0000 0000 e, ?

Linux Three-Level Page Table IV (2009)

What if the address is 010 1010 1010 (HEX) ?

Operating Systems Exercises 2008—2010 -- © 2008-2013 Rahmat M. Samik-lbrahim (VauLSMorg) and Heri Kurniawan (Fasilkom Ul) -- 25/ 36

Verbatim copying is permitted provided this notice copyright notice is preserved.
Revision: 531 -- 17 Jan 2013 URL: http://rms46.vLSM.org/2/171.pdf

Buddy Algorithm |

Basically, the "Buddy Algorithm" allocates pages in the power-of-2. The request will be rounded up
to the next highest power of 2. Give a simple illustration of the this algorithm. Suppose, there exists
a single contiguous memory of 64 pages.

(a) Process A requests 7 pages. (b) Process B requests 3 pages. (c) Process C requests 9 pages.
(d) Process B returns its request. (e) Process D requests 9 pages.

initial a b c d e

64 pages

Buddy Algorithm Il

(See picture above). (a) Process A requests 9 pages. (b) Process B requests 7 pages. (c) Process
C requests 3 pages. (d) Process B returns its request. (e) Process D requests 1 page.

Buddy Algorithm lll

(See picture above). (a) Process A requests 5 pages; (b) Process B requests 3 pages; (c) Process
C requests 5 pages; (d) Process B returns its request; (e) Process D requests 2 pages.

Operating Systems Exercises 2008—2010 -- © 2008-2013 Rahmat M. Samik-lbrahim (VauLSMorg) and Heri Kurniawan (Fasilkom Ul) -- 26 / 36
Verbatim copying is permitted provided this notice copyright notice is preserved.
Revision: 531 -- 17 Jan 2013 URL: http://rms46.vLSM.org/2/171.pdf

HardDisk (1/0) |

* The disk rotates at 6000 RPM. Each track holds 1000 sectors @ 10 kbytes.

* Whenever one of these two buffers (@10 kbytes) is empty, the system will refill it at a constant
rate of 5 Mbytes per second.

» At t=0, the disk head is at sector=0, Buffer #1 is full, and Buffer #2 is empty.

Buffer #1 \
5 MB/s Buffer #2

disk

Buffer #n

a) BEST CASE: For a maximal effective transfer rate, at least how many buffers are needed?
How much will be that effective transfer rate? Explain!

b) WORST CASE: For a maximal effective transfer rate, at least how many buffers are needed?
How much will be that effective transfer rate? Explain!

HardDisk Il

A disk with the following specifications:

* Using five (5) platters

* One platter consists of two (2) surfaces (top surface #0 and bottom surface #1).

* One (1) surface capacity: 5 Gb

+ Total tracks on one (1) surface: 2500 (cylinder #0 - #2499).

» Speed rotation: 6000 rpm.

+ Total sectors in one track: 500 (sector #0 - #499).

* Time needed to move from one track to adjacent track: 1 ms (for example: moving from track 1
to track 2 = 1ms, from track O to track 2 = 2ms).

* Assume, only one head active reading/writing. Time needed to move from surface #0 to surface
#1is 0 ms.

+ Disk scheduling algoritm: First Come First Served.

« At T=0, the head position is above cylinder #0, sector #O0.

* Measurement: 1 kbyte = 1000 byte; 1 Mbyte = 1000 kbyte; 1 Gbyte = 1000 Mbyte.

Questions:

a) Determine the disk size.

b) Determine the capacity of one cylinder.

c) How long it takes to read/write one sector?

d) Determine the time (mS) to move from surface#0, track#0, sector#0 to surface#0,

track#4,sector #399 ([0,0,0] —[0,4,399]).

Operating Systems Exercises 2008—2010 -- © 2008-2013 Rahmat M. Samik-lbrahim (VauLSMorg) and Heri Kurniawan (Fasilkom Ul) -- 27 /36
Verbatim copying is permitted provided this notice copyright notice is preserved.
Revision: 531 -- 17 Jan 2013 URL: http://rms46.vLSM.org/2/171.pdf

e) Determine the time (mS) to move from [0,0,0] — [0,0,499] — [0,3,99] — [0,3,499] — [0,2,249].

HardDisk Il

A disk consists of 5000 cylinders (from cylinder 0 — cylinder 4999). Some processes request to
read/write some cylinders. System pools the entire request on the following queue:

Queue(Q)=200, 1500, 3500, 2000, 4000, 500
Right now the disk is reading cylinder 3000. Determine the cylinder access sequence and its total
movement if the following disk scheduling algorithms are used:

a) SSTF
b) LOOK (assume the head moves to the left direction)

HardDisk IV (2009)
e The disk rotates at 6000 RPM. Each
track holds 1000 sectors @ 10 kbytes.
e Whenever one of these two buffers
5 MB/s Buffer \ (@10 kbytes) is empty, the system will
#1 refill it at a constant rate of 5 Mbytes
per second.
e At t=0, the disk head is at sector=0,
Buffer #1 is full, and Buffer #2 is
Buffer . empty.
25 disk

a) How long will it take to write down
1Mbytes on the same track starting sector 0, sector 1, and so on?

b) How long will it take to write down 1Mbytes on the same track starting sector 999, sector
998, sector 997, and so on?

Disk Partitions |

Select device ----first---- -- geom/last-- ------ sectors-----
Device Cyl Head Sec Cyl Head Sec Base Size Kb
/dev/c0dl 32 16 63

0 0 0 31 15 62 0 32256 16128

Num Sort Type
pO0 81 MINIX 63
pl 81 MINIX
p2 81 MINIX
p3 81 MINIX

wMNhRrO

a) Divide a disk into four (4) main partitions. The first partition size is 2048 kbytes. the second
one is 4096 kbytes, and the third one is 8192 kbytes. Please fill the blanks of the scheme
above.

Operating Systems Exercises 2008—2010 -- © 2008-2013 Rahmat M. Samik-lbrahim (VauLSMorg) and Heri Kurniawan (Fasilkom Ul) -- 28/ 36
Verbatim copying is permitted provided this notice copyright notice is preserved.
Revision: 531 -- 17 Jan 2013 URL: http://rms46.vLSM.org/2/171.pdf

b) Why does the first partition not start from track #07?

Disk Partitions II

Please fill the blanks of this following scheme:

Select device --——first---- —- geom/last-- ------ sectors-----
Device Cyl Head Sec Cyl Head Sec Base Size Kb
/dev/c0dl 65 16 63
0 0 0 64 15 62 0 65520 32760
Num Sort Type
0 pO0 81 MINIX 0 1 0 63
1 pl 81 MINIX 4 3 0 T T a221
2 p2 81 MINIX 12 5 0 12411
3 p3 81 MINIX 28 9 0 28971
Disk Partitions lli
Select device ----first---- --geom/last-- ------ sectors—-----
Device Cyl Head Sec Cyl Head Sec Base Size Kb
/dev/c0d3 65 16 63
0 0 0 64 15 62 0 65520 32760
Num Sort Type
0 p0 81 MINIX 63 8032
1 pl 81 MINIX 16632
2 p2 81 MINIX 4032
3 p3 81 MINIX
Select device -———first---- --geom/last-- ------ sectors—-----
Device Cyl Head Sec Cyl Head Sec Base Size Kb
/dev/c0d3pl 65 16 63

16 0 0 48 15 62 16128 33264 16632
Num Sort Type

0 0 81 MINIX 4032
1 1 81 MINIX 4032
2 2 81 MINIX 4032
3 3 81 MINIX

a) Please fill the blanks of the above scheme.
b) What is the size of partition /dev/c0d3p2?
c) What is the size of partition /dev/c0d3p1s2?

Operating Systems Exercises 2008—2010 -- © 2008-2013 Rahmat M. Samik-lbrahim (VauLSMorg) and Heri Kurniawan (Fasilkom Ul) -- 29/ 36
Verbatim copying is permitted provided this notice copyright notice is preserved.
Revision: 531 -- 17 Jan 2013 URL: http://rms46.vLSM.org/2/171.pdf

Disk Partitions IV (2009)

a) Please fill the blanks of this following scheme.

Select device --——first---- --geom/last-- ------ sectors-----
Device Cyl Head Sec Cyl Head Sec Base Size Kb
/dev/c0d3 406 16 63

0 0 0 405 15 62 0 409248 204624

Num Sort Type

0 pO0 81 MINIX 0 1 1 64 50368
1 pl 81 MINIX 100 0 0 50400
2 p2 81 MINIX 200 0 0 50400
3 p3 81 MINIX 300 0 0
Select device --—--first---- --geom/last-- ------ sectors-----
Device Cyl Head Sec Cyl Head Sec Base Size Kb
/dev/c0d3 406 16 63
/dev/c0d3:1 100 0 0 199 15 62 100800 100800 50400
Num Sort Type
0 0 81 MINIX 100 1 1 100864 12568
1 1 81 MINIX 125 0 0 12600
2 2 81 MINIX 150 0 0 12600
3 3 81 MINIX 175 0 0

b) What is the size of partition /dev/c0d3p27?
c) What is the size of partition /dev/c0d3p1s2?

File System |

This file system is using an inode (unix) alike allocation method. The pointer size is 4 bytes.
Supposed there are 12 pointers in the i-node. The first 10 ones point to "direct blocks", i.e. the
content (data) of the file. The next one points to a single "single indirect block", which points to
"direct blocks". The last one points to a single "double indirect block", which points to "single
indirect blocks".

a) If the block size is 100 bytes, what will be the maximum size of the file?

b) If the block size is 1000 bytes, what will be the maximum size of the file?

c) Ifthe block size is N bytes, what will be the maximum size of the file?

direct blocks

single indirect

double indirect

Operating Systems Exercises 2008—2010 -- © 2008-2013 Rahmat M. Samik-lbrahim (VauLSMorg) and Heri Kurniawan (Fasilkom Ul) -- 30/ 36
Verbatim copying is permitted provided this notice copyright notice is preserved.
Revision: 531 -- 17 Jan 2013 URL: http://rms46.vLSM.org/2/171.pdf

File System I

a) (See picture above). This file system is using an inode (unix) alike allocation method. The
pointer size is 2 bytes and the block size is 1000 bytes. Supposed there are 12 pointers in the
i-node. The first 10 ones point to "direct blocks", ie. the content (data) of the file. The next
one points to a single "single indirect block", which points to "direct blocks". The last one
points to a single "double indirect block", which points to "single indirect blocks". What is
the maximum size of a file?

b) What is the maximum size of a file if the pointer size is PS bytes, the block size is BS bytes,
and there are PTR pointers in the i-node?

Operating Systems Exercises 2008—-2010 -- © 2008-2013 Rahmat M. Samik-Ibrahim (VauLSMorg) and Heri Kurniawan (Fasilkom Ul) -- 31/ 36
Verbatim copying is permitted provided this notice copyright notice is preserved.
Revision: 531 -- 17 Jan 2013 URL: http://rms46.vLSM.org/2/171.pdf

True/False

—

T/F
T/F

A

T/F
T/F
T/F
T/F
T/F
T/F

© N O O bk W

9. T/F

An Operating System is a program (2010).
An Operating System is an intermediary between the users and the hardware of a
computer (2010).

An Operating System is a license (2010).

A System Program is a part of the kernel (2010).

A System Program is also called an Applications Program (2010).

A System Program is a also called System Call (2010).

The VMware family (eg. “VMware Player’) is a MINIX tool (2010).

The VMware family (eg. “VMware Player’) runs as an application on top of a host
operating system (2010).

The VMware family (eg. “VMware Player’) does not require virtualization support from
the host kernel (2010)

Integer Arithmetics (10-12)(2010):

10.T/F
1.T/F
12.T/F
13.T/F
14.T/F
15.T/F
16.T/F

17.T/F

18.T/F
19.T/F

20.T/F

21.T/F
22.T/F

23.T/F
24.T/F

25.T/F

26.T/F

int ii = Oxdead;

int jj Oxface;
ii + jj = 0x1d97b;
ii + jj = 0x11101100101111011;

ii + jj = Oxdeadface;

Creating a new thread is much faster then creating a new process (2010).
Creating a new thread is much slower then creating a new process (2010).
Creating a new thread is as fast as creating a new process (2010).

For the fork () system call, the return code for the £ork () of child process is 0
(2010).

For the fork () system call, the return code for the fork () of parent process is 0
(2010).

For the fork () system call, the process ID of the child process is 0 (2010).

A Round Robin scheduling system, with a large time quantum/slice is less
responsive (2010).

A Round Robin scheduling system, with a large time quantum/slice is more
responsive (2010).

A Round Robin scheduling system, can not be a non-preemptive system (2010).

The memory page fault frequency can be reduced if most processes are CPU bound
(2010).

The memory page fault frequency can be reduced if enlarging the page size (2010).

The memory page fault frequency can be reduced if most processes are I/O bound
(2010).

There size of a disk with 5 double side platters, 5000 cylinders, 1024 sectors per
track, and 1 kBytes per sector is > 60 Gbytes (2010).

There size of a disk with 5 double side platters, 5000 cylinders, 1024 sectors per

Operating Systems Exercises 2008—2010 -- © 2008-2013 Rahmat M. Samik-lbrahim (VauLSMorg) and Heri Kurniawan (Fasilkom Ul) -- 32/ 36
Verbatim copying is permitted provided this notice copyright notice is preserved.
Revision: 531 -- 17 Jan 2013 URL: http://rms46.vLSM.org/2/171.pdf

27.T/F

28.T/F

29.T/F

30.T/F

31.T/F
32.T/F
33.T/F

34.T/F

35.T/F

36.T/F

37.T/F

38.T/F

39.T/F

40.T/F

M.T/F
42.T/F

43.T/F
44.T/F

45.T/F
46.T/F
47. T/ F
48.T/F

49.T/F

50.T/F

track, and 1 kBytes per sector is > 40 Gbytes (2010).

There size of a disk with 5 double side platters, 5000 cylinders, 1024 sectors per
track, and 1 kBytes per sector is > 20 Gbytes (2010).

An address generated by the CPU is commonly referred to as a register address
(2010).

An address generated by the CPU is commonly referred to as a logical address
(2010).

An address generated by the CPU is commonly referred to as a physical address
(2010).

A strategy to load pages only as there are needed is known as shared paging (2010).
A strategy to load pages only as there are needed is known as swap paging (2010).

A strategy to load pages only as there are needed is known as demand paging
(2010).

The SSTF (Shortest Seek Time First) disk scheduling algorithm, may cause
starvation for some request (2010).

The SSTF (Shortest Seek Time First) disk scheduling algorithm, is the most optimal
scheduling algorithm (2010).

The SSTF (Shortest Seek Time First) disk scheduling algorithm, selects the request
with the least seek time from the current head position (2010).

When the disk arm moves from end to end, servicing all requests in its path, the
scheduling mechanism is known as Shortest Seek Time First (SSTF) (2010).

When the disk arm moves from end to end, servicing all requests in its path, the
scheduling mechanism is known as SCAN (2010).

When the disk arm moves from end to end, servicing all requests in its path, the
scheduling mechanism is known as LOOK (2010).

A Real Time System may have these following characteristic: general/ multipurpose
(2010).

A Real Time System may have these following characteristic: large size (2010).

A Real Time System may have these following characteristic: real number only, no
integer (2010).

A Multimedia System may have these following characteristic: large files (2010).

A Multimedia System may have these following characteristic: sensitive to timing
delay (2010).

A Multimedia System may have these following characteristic: high data rates (2010).
A spin-lock semaphore, wastes CPU cycles (2010).
A spin-lock semaphore, is also called a busy-waiting semaphore (2010).

A spin-lock semaphore, is less accurate compared to the block/wakeup method
(2010).

Most General Purpose Operating Systems provide "Deadlock Prevention"
mechanism (2010).

Most General Purpose Operating Systems provide "Deadlock Avoidance"
mechanism (2010).

Operating Systems Exercises 2008—2010 -- © 2008-2013 Rahmat M. Samik-lbrahim (VauLSMorg) and Heri Kurniawan (Fasilkom Ul) -- 33 /36
Verbatim copying is permitted provided this notice copyright notice is preserved.
Revision: 531 -- 17 Jan 2013 URL: http://rms46.vLSM.org/2/171.pdf

51.T/F

52.T/F
53.T/F
54.T/F
55.T/F
56.T/F
57.T/F

58.T/F
59.T/F

60.T/F

61.T/F

62.T/F
63.T/F

64.T/F
65.T/F
66.T/F

67.T/F
68.T/F
69.T/F
70.T/F
1.T/F
72.T/F
73.T/F
74.T/F

75.T/F
76.T/F

77.T/F
78.T/F

79.T/F

Most General Purpose Operating Systems provide "Nothing" to avoid Deadlock
(2010).

The page fault frequency can be reduced if most processes are CPU bound (2010).
The page fault frequency can be reduced if enlarging the page size (2010).

The page fault frequency can be reduced if most processes are /O bound (2010).
A Direct Memory Access (DMA) controller increases I/O interrupts (2010).

A Direct Memory Access (DMA) controller reduces I/O interrupts (2010).

A Direct Memory Access (DMA) controller has nothing to do with 1/O interrupts
(2010).

In a Memory Mapped I/O system, the I/O instructions are special (2010).

In a Memory Mapped I/O system, a certain memory address range is reserved for
the 1/O interfaces (2010).

In a Memory Mapped I/O system, the I/O uses the same instructions as the Memory
References (2010).

The Translation Look-aside Buffer (TLB), is a software strategy of a page-table
implementation (2010).

The Translation Look-aside Buffer (TLB), is a small fast look-up cache (2010).

The Translation Look-aside Buffer (TLB), should have the entry size as large as the
page-table size (2010).

A strategy to load pages only as there are needed is known as shared paging (2010).
A strategy to load pages only as there are needed is known as swap paging (2010).

A strategy to load pages only as there are needed is known as demand paging
(2010).

The host uses Interrupts to handle busy-waiting/ polling events (2010).

The host uses Interrupts to handle asynchronous events (2010).

The host uses Interrupts to handle both maskable and non-maskable events (2010).
In a 32-bit system, the external address size is at most 32 bits (2009).

In a 32-bit system, the ALU size is at most 32 bits (2009).

In a 32-bit system, the external data bus size is at most 32 bits (2009).

In a 32-bit system, the register integer size is at most 4 bytes (2009).

A data cache is a collection of data duplicating values that were stored elsewhere,
earlier (2009).

A data cache is expected miss rate declines with an increased the cache size (2009).

A data cache is fetch time is much shorter compared if it is fetched from the original
place (2009).

A data cache is expected hit rate should be close to 1 (2009).

In a write-through cache, every write to the cache causes a synchronous write to the
backing store (2009).

In a write-through cache, is also called a write-back cache (2009).

Operating Systems Exercises 2008—2010 -- © 2008-2013 Rahmat M. Samik-lbrahim (VauLSMorg) and Heri Kurniawan (Fasilkom Ul) -- 34/ 36
Verbatim copying is permitted provided this notice copyright notice is preserved.
Revision: 531 -- 17 Jan 2013 URL: http://rms46.vLSM.org/2/171.pdf

80.T/F
81.T/F

82.T/F

83.T/F

Thread T1 and T2 are sharing integers “ii” and

In a write-through cache, is also called a delayed-write cache (2009).

The address binding of instructions and data to memory address can be done at
compile time (2009).

The address binding of instructions and data to memory address can be done at load
time (2009).

The address binding of instructions and data to memory address can be done at
execution time (2009).

ji”. Suppose semaphore functions are implemented

with “wait(): decreases the semaphore integer” and “signal(): increases the semaphore integer”.
Initially, S1=1 and S2=0. Which one of the following will have no race-condition (84-86):

84.T/F
T1l T2
wait(S1) wait(S1)
ii =ii + 1 ii =ii -1
signal (S1) signal (S1)
wait (S2) signal (S2)
jj = ii + 33
85.T/F
Tl T2
wait (S1) wait (S2)
ii =ii + 1 ii =ii - 1
jj = ii + 33 signal (S2)
signal (S1)
86.T/F
Tl T2
wait (S1) wait (S1)
ii =ii + 1 ii =1ii - 1
signal (S1) signal (S1)
wait (S2)
j3 = ii + 33

signal (S2)

87.T/F

88.T/F
89.T/F

90.T/F

N.T/F

Dynamic Linking Libraries are combined into the binary image together with all other
modules (2009).

Dynamic Linking Libraries are the linking is postponed until executing time (2009).

Dynamic Linking Libraries are uses “.DLL’ extension in Microsoft Windows family
(2009).

The total time to prepare a disk system to read or write a data sector is transmission
time (2009).

The total time to prepare a disk system to read or write a data sector is latency time
(2009).

Operating Systems Exercises 2008—2010 -- © 2008-2013 Rahmat M. Samik-lbrahim (VauLSMorg) and Heri Kurniawan (Fasilkom Ul) -- 35/ 36
Verbatim copying is permitted provided this notice copyright notice is preserved.
Revision: 531 -- 17 Jan 2013 URL: http://rms46.vLSM.org/2/171.pdf

92.T/F

93.T/F

94.T/F

95.T/F

96.T/F

97.T/F
98.T/F
99.T/F

100.T/F

101.T/F

102.T/F

103.T/F
104.T/F
105.T/F

The total time to prepare a disk system to read or write a data sector is seek time
(2009).

Copy-on-write is a common technique used by several operating systems, including
the Microsoft Windows Family (NT, 2000, XP, Vista, etc) (2009).

Copy-on-write is a common technique used by several operating systems, including
Linux (2009).

Copy-on-write is a common technique used by several operating systems, including
Solaris (2009).

The FIFO algorithm is a strategy to manage free memory for kernel processes
(2009).

The buddy system is a strategy to manage free memory for kernel processes (2009).
The slab allocation is a strategy to manage free memory for kernel processes (2009).

When the disk arm moves from end to end, servicing all requests in its path, the
scheduling mechanism is known as First Come First Served (FCFS) (2009).

When the disk arm moves from end to end, servicing all requests in its path, the
scheduling mechanism is known as Shortest Seek Time First (SSTF) (2009).

When the disk arm moves from end to end, servicing all requests in its path, the
scheduling mechanism is known as SCAN (2009).

When the disk arm moves from end to end, servicing all requests in its path, the
scheduling mechanism is known as LOOK (2009).

PCl is a computer bus interface for attaching certain hardware devices (2009).
USB is a computer bus interface for attaching certain hardware devices (2009).
SATA is a computer bus interface for attaching certain hardware devices (2009).

Operating Systems Exercises 2008—2010 -- © 2008-2013 Rahmat M. Samik-lbrahim (VauLSMorg) and Heri Kurniawan (Fasilkom Ul) -- 36 / 36
Verbatim copying is permitted provided this notice copyright notice is preserved.
Revision: 531 -- 17 Jan 2013 URL: http://rms46.vLSM.org/2/171.pdf

	Short Questions
	Operating Systems Concepts
	Intellectual Property Rights
	Process State I
	Process State II
	Process State III
	Process State IV
	Process State V
	Process State VI
	Process State VII (2009)
	CPU Scheduling
	Fork I
	Fork II
	Fork III
	Fork IV
	Fork V
	Fork VI
	Fork VII (2009)
	MultiThreads
	Synchronization I
	Synchronization II
	Synchronization III
	Synchronization IV
	Deadlock
	Memory I
	Memory II
	Memory III
	Memory IV
	Memory V
	Linux Three-Level Page Table I
	Linux Three-Level Page Table II
	Linux Three-Level Page Table III
	Linux Three-Level Page Table IV (2009)
	Buddy Algorithm I
	Buddy Algorithm II
	Buddy Algorithm III
	HardDisk (I/O) I
	HardDisk II
	HardDisk III
	HardDisk IV (2009)
	Disk Partitions I
	Disk Partitions II
	Disk Partitions III
	Disk Partitions IV (2009)
	File System I
	File System II
	True/False

